Skip to main content

MPA - High Energy Astrophysics

The area of interests of the MPA High Energy Astrophysics group can be broadly outlined as physical processes and interaction of matter and radiation under extreme astrophysical conditions. The objects where these processes are investigated include the Universe as a whole, clusters of galaxies, supermassive black holes and jets in AGN, accreting black holes and neutron stars in X-ray binaries, Gamma-ray bursts and the Cosmic Microwave Background. Similarities in the underlying physical processes bind these diverse subjects together. A special focus of the work is accretion onto compact objects (black holes, neutron stars and white dwarfs). This includes theories for the hydrodynamics of the accretion process and the origin of the energetic radiation. Examples are detailed theories for the boundary layer around accreting neutron stars, and the theory of Comptonization and it's applications. In addition members of the group are closely involved with interpretation of the observational signatures of accreting black holes and neutron stars, the study of X-ray emission from the clusters of galaxies, relic radio sources, theories for the central engines of Gamma-ray Bursts, the evolution of binary, triple, and higher-order multiplicity stars, and the behavior of magnetic fields in a wide range of astrophysical environments. Likewise, this research group has interests in the study of the interaction of CMB photons with matter at different evolutionary epochs of our universe. These include the cosmological recombination, the end of the Dark Ages/beginning of reionization, and the late accelerated expansion phase seeded by a cosmological constant or any sort of Dark Energy. Particular emphasis is paid on the characterization of the CMB spectrum generated during recombination, the interaction of the CMB with the heavy elements synthesized by the first stars, and the secondary anisotropies introduced by newly ionized bubbles, galaxy groups and clusters during the ntermediate and late ages of our universe. The group can host PhD students in any (or a combination of) these areas.

One of the key elements of the group's approach is to complement the theoretical advancement of the field with state-of-the-art data analysis of the experimental data. The group is actively using the data from the RXTE, CHANDRA, XMM-Newton, INTEGRAL, Swift and WMAP observatories. The group also provides scientific support for future missions that will lead to substantial progress in high resolution X-ray spectroscopy and microsecond timing.

Research fields for which PhD projects are offered:

  • Physical cosmology: CMB, interaction of matter and radiation during
    recombination, reionization and the late stages of our universe
  • Accretion onto black holes and neutron stars: theory and observations
  • Jets in quasars and micro-quasars
  • Elementary physical processes, including theory of Comptonisation
  • Origin and growth of supermassive black holes
  • Populations of accreting black holes and neutron stars in young and old galaxies
  • X-ray emission from clusters of galaxies and cooling flows
  • Models for central engines of Gamma-ray bursts

For more details visit the homepage

MPA High Energy Astrophysics.